Deriving degrees of accessibility in Algonquian peripheral agreement  
Yadong Xu (U Manitoba)

Overview. In the Probe-Goal framework, in order for Agree to take place, two questions need to be considered: does the probe see the goal (i.e. accessibility) and does the probe want the goal (i.e. matching)? Several mechanisms, such as the SCOPA (Baker 2008, 2011), the Activity Condition (AC, Chomsky 2000, 2001), phases (Chomsky 2001, 2008), and horizons (Keine 2019), overlap on tackling the issue of accessibility. However, it is not clear how much these mechanisms may interact with each other in the same language. This paper investigates this question through the lens of Algonquian by focusing on an agreement suffix, known as PERIPHERAL AGREEMENT (Goddard 1979). I argue that the crosslinguistic behaviors of this agreement suffix cannot be determined by a single mechanism but result from interactions of multiple mechanisms, which can be syntactic and morphological.

Peripheral agreement variations. Peripheral agreement (PerA) occurs at the right periphery of the indicative verb and displays extensive crosslinguistic variation. As illustrated in (1), the inanimate object is indexed in Menominee by PerA -an, (1a), but is not indexed in Cree resulting in the number distinction of the inanimate object being neutralized, (1b). It is also possible for plurality of the SAP actor to affect the distribution of PerA in certain languages, such as Menominee. The pattern shown for Menominee in (1a) in fact holds only for forms in which the SAP actor is singular. If the SAP actor is plural, as in (1c), PerA is absent, again with the number of the inanimate object being neutralized as in Cree.

(1) a. √Agree: e.g. Menominee  
ne-po:n-a: -n -an 
1-put.in-OBJ.IN-1s-IN.PL 
‘I put them (IN.) in’

b. ✗Agree: e.g. Cree  
i-n-wap-aht-ê -n 
1 -see -OBJ.IN-1s 
I -see it/them (IN.)’

c. ✗Agree: Menominee 1p  
ne-po:n-e: -menaw 
1 -put.in-OBJ.IN-1p 
‘We put it/them (IN.) in’

Cline. A survey of five Algonquian languages (Delaware, Menominee, Ojibwe, Oji-Cree, and Cree) shows that the ability of peripheral agreement to index different types of objects varies, conditioned by verb classes and possibly also by person, number, and animacy. The variation takes the shape of a cline, as shown in (2). A check mark in this “staircase” table indicates that the given object is indexed by PerA, e.g. (1a), and an X mark indicates the relevant object is unindexed by PerA, e.g. (1b) and (1c).

(2) Crosslinguistic cline of object indexed by peripheral agreement


In table (2), the cells marked with the X mark can be further divided into two types: one in which PerA disappears as in (1b) and (1c), and one in which PerA appears, but, instead of indexing the object, it indexes some other 3rd person argument. For instance, unlike in Ojibwe with PerA -an indexing the IN.PL object, (3a), PerA in Cree does show up but indexes the animate subject instead of the inanimate object, (3b).

(3) a. √Agree with object: e.g. Ojibwe  
o-waaband-aa -naawaan-an 
3-see -OBJ.IN-3p -IN.PL 
‘They see them (IN.)’

b. ✗Agree with object: e.g. Cree  
wâpaht-ê -w-ak 
see -OBJ.IN-3 -AN.PL 
‘They see it/them (IN.)’

1 The abbreviations used in this paper are as follows, 1, 2 = 1st, 2nd person, 3 = 3rd animate person, AN = animate, IN = inanimate, OBV = obviative (3rd animate non-topical person), TI = transitive verb taking an inanimate object.
To quickly sum up, three PerA patterns can be identified from this cline: pattern 1 is where the object is indexed by PerA, pattern 2 is where PerA never appears on the verb, and pattern 3 is where PerA indeed surfaces on the verb but does not index the object.

**Background: Algonquian morphosyntax.** I follow Halle & Marantz (1993) and Branigan & MacKenzie (1999) in treating PerA as C⁰. The syntactic structure of the full-fledged transitive verb is schematized in (4) in which three layers of agreement inflection are involved: [theme signs] (boxed) as Voice⁰, [central agreement] (underlined) as Infl⁰, and PerA (bolded) as C⁰ (cf. Brittain 1999; Lochbihler 2012; Oxford 2014).

(4) ...Root _-v⁰ -Voice⁰-Infl⁰ -C⁰
    _-waab-and _-naawaa-an ‘They see them (IN.)’

The argument structure of different verb classes is shown in (5). Distinct from canonical transitive verbs, (5a), pseudo-transitive verbs lack theme signs thus are missing Voice⁰, (5b); ditransitive verbs additionally contain the goal-introducer Appl⁰ which is located above v⁰ but below Voice⁰, (5c) (cf. Quinn 2006).

(5) a. canonical transitive: C⁰ [Infl⁰ Infl⁰ [VoiceP DPactor Voice⁰ [vP v DPobj …]]]
    b. pseudo-transitive: C⁰ [Infl⁰ Infl⁰ [vP DPactor v DPobj …]]
    c. ditransitive: C⁰ [Infl⁰ Infl⁰ [VoiceP DPactor Voice⁰ [Appl⁰ DPgoal [vP v DPtheme …]]]

**Patterns explained by SCOPA.** Baker’s (2008, 2011) SCOPA states that agreement in person features must be strictly local while agreement in other φ-features, such as number and gender, need not be. The SCOPA captures the overall behavior of PerA in always indexing 3rd persons but never 1st or 2nd persons. However, it is insufficient in predicting what kind of 3rd-person object is accessible to C⁰ and what kind is not. In the following, I show that various mechanisms interact in giving rise to the variations in the cline.

**Patterns by horizons.** To begin with the patterns involving pseudo-transitives and ditransitives, a mechanism needs to account for why PerA succeeds in some languages but fails in others. The phase-based account (PIC, Chomsky 2000) and Keine’s (2019) horizons both assume that certain areas of the structure are unavailable to be accessed by the probe but they fundamentally differ in what constitutes the delimiting edge (i.e. horizon). Algonquian provides support in favor of horizons, as the delimiting boundary varies by languages and by verb types, contra the fixed position in the PIC. Specifically, I propose that there are no horizons for the C-probe in Delaware, so C⁰ is able to see all elements in the structure. For Ojibwe, only the vP of ditransitive verbs constitutes a horizon thus blocking PerA from indexing the theme. For the other 3 languages, Oji-Cree, Menominee, and Cree, the vP is a horizon in pseudo-transitives and ditransitives preventing the probe targeting the accounting objects.

**Patterns by AC.** Moving to canonical transitive verbs, the advantage of the AC is it can explain patterns in which the probe on C⁰ targets the less local internal argument rather than the more local external argument. Especially, it nicely accounts for the forms involving two 3rd person arguments (i.e. 3 on IN/OBV forms in Delaware, Ojibwe, and Oji-Cree) because the 3rd person subject has already been valued by the previous probe on Infl⁰, it would become inactive and inaccessible to the subsequent probe on C⁰. However, this account cannot apply in Cree and Menominee where the AC is clearly violated with PerA indexing the actor rather than the object, cf. (3b).

**Patterns by probe specifications and impoverishment.** The remaining patterns in the cline involving unindexed IN/OBV objects in Cree and Menominee do not follow from general principles but can be attributed to probe specifications. Oxford (2015) proposes that the probe in Cree is more specified as [uD, uProx]. Hence the inanimate/obviative objects are not indexed by PerA as they do not match the probe. Lastly, as for the SAP plurality effect alternating the PerA patterns in Menominee, recall (1a) vs. (1c), Halle & Marantz (1993) attribute this particular disappearance of PerA to *impoverishment*. That is, the IN.PL object is agreed by C⁰ but is deleted because of the insertion of the vocabulary item -menaw in (1c).

**Summary.** Variation in Algonquian helps to clarify the interactions of distinct theoretical claims regarding accessibility. The PerA cline indicating varying degrees of robustness in indexing the object reflects the interaction of both syntactic and morphological mechanisms.
References.